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Abstract 

In this paper the effects of coupling a non-resonant optical lattice to a gas is studied. When the lattice 
induces a periodic modulation of the gas density, strong Bragg diffraction of light can occur. If a significant 
fraction of the light used to make the periodic structure is diffracted it can potentially limit the achievable 
intensities inside the lattice limiting the ability to manipulate the gas with the light. We calculate the 
evolution of the light fields by finding solutions to the wave equation with a periodic refractive index 
induced by the lattice. The local gas density perturbation induced by the lattice is determined by solution of 
the Boltzmann kinetic equation in the collisional regime. This allows us to predict the limits of gas 
transport within optical lattice. We discuss the maximum energy and momentum transfer to the gas from 
the lattice. 
 

Introduction 
The manipulation of atomic and molecular gases using strong optical fields has applications in the creation 
of cold molecules by deceleration of cold molecular beams and for measurement of thermodynamic 
parameters in the gas phase using the techniques of coherent Rayleigh [1,2] and coherent Rayleigh-
Brilluoin scattering [3-5]. In all these techniques the dipole force within an optical lattice creates a 
modulation of the gaseous medium. In optical Stark deceleration, which is used to create slow cold 
molecules from a molecular beam, the molecules are trapped by the lattice in a periodic structure and 
transported to a well defined velocity, either by the oscillatory dynamics of the centre-of-mass motion of 
the trapped particles, or by acceleration or deceleration of the lattice itself. When using this lattice 
interaction for gas diagnostics, the frequency profile of the light scattered from a periodic modulation of the 
gas refractive index contains information on the temperature and gas composition.  The periodic 
modulation of the refractive index of the gas leads to the creation of a Bragg structure which efficiently 
diffracts light when the gas density is large. If a significant fraction of the light used to make the periodic 
structure is diffracted, it can potentially limit the achievable intensities inside the lattice which could 
degrade the ability to manipulate of gases the optical lattices. This effect becomes important when a pulsed 
or continuous optical lattice is produce for acceleration/deceleration, gas separation, local gas heating and 
microscale gas mixing and other processes, considered in a recent review [6].  
 
In this paper we use a two wave mixing process to produce a self consistent approach to model the 
interaction between the velocity distribution of the gas and the optical field used to perturb the distribution.  
The evolution of the gas is modeled as a distribution function, which is perturbed by the dipole force of the 
optical lattice. The local density and thus the refractive index variation of the gas in the lattice can be 
determined which controls the diffraction of the light. The evolution of the diffracted light field and the 
lattice beams is determined by solution of the wave equation. 
The evolution of electric field, E, of the light within the lattice in space, x, and time, t, is determined by 
solution of the wave equation [7],  
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where n is the refractive index, c is the speed of light, µ0 is the permeability of free space and Pnl is non-
linear polarizability of the medium. 
When operated far from resonance, the refractive index can be related to the polarizability of the gas 
particles by  
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The refractive index of the unperturbed gas is   
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αNn +=  where N0 is the unperturbed gas density and 

α is the static polarisability of each particle. The perturbation of the refractive index induced by the field is 
related to the change in density and is given by 
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If we assume that the scattering process is only due to spatial organization of the gas only the linear 
polarizability is important and thus we can neglect the nonlinear polarizability term in equation (1) such 
that 

2

2

2
0

2

2

2

2
0

2

2 2
t
E

c
nn

t
E

c
n

x
E

∂
∂Δ

=
∂
∂

−
∂
∂        (4) 

The gas density perturbation, ),( txNΔ , can be found from the velocity distribution function as 
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where ),(0 Tvf  is the local Maxwellian distribution function and ),,( Tvxf is derived by solution of the 1-D 
Boltzmann equation along the lattice direction, x, given below. 
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We need only consider the fields and gas motion in 1-D along the x direction as the axial force which 
induces the refractive index change is much stronger than the radial force. As we use pulsed light fields no 
radial motion is induced and therefore does not affect the diffracted radial field components. We consider 
the collisional term of the Boltzmann equation to be, cff τ/)( 0−− , in the Bhatnagar-Gross-Krook (BGK) 
approximation [8] as we assume our perturbations are small. 

 
 

Fig. 1. Schematic of 1D laser beams interference pattern. 
 

Figure 1 shows the input and output fields that interact with the gas to produce a periodic refractive index 
structure Bragg structure. The optical lattice is created by the interference of two plane waves of intensities 

1I  and 2I (Fig. 1) with electric fields 
 c.c.+]exp[= 1111 t)x-ωi(kAE ; c.c+)]([exp 2222 tωxki=AE +     (7) 

The phase velocity of the interference pattern and the slowly varying field amplitude in the interference 
region are 

qkk /)/()( 2121 Ω=+−= ωωξ ,       (8) 
where 2121 , and , kkωω are the frequencies and wavevectors of each field. The intensity is proportional the 
square of the field given by  
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Note, that a standing or moving optical lattice can conceptually be created by a single laser and a standing 
or moving mirror [6]. 

For molecules that are far detuned from resonance, the optical lattice/electrostrictive potential is 
given in the quasi- electrostatic approximation described by [7]  

),(),( 2
2
1 txEtxU α−=         (10) 



The gradient (or ponderomotive) force along the lattice is given by: 
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The perturbation of the index of refraction, which leads to Bragg diffraction for the case where Nn Δ∝Δ is 
given by 

.}.])()({exp[5.0 2121 cctxkkinn a +−−+Δ=Δ ωω .      (12) 
The evolution of the fields is simplified using the slowly varying envelope approximation, which is valid 
when the field envelope varies slowly compared to the optical frequency. These approximations are given 
as  
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From the optical wave equation (4), the equation for E2 (9) and for refractive index variation induced by the 
fields (12), we derive the equations for the complex electric field in each interacting laser beam: 
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These equations describe the conversion of one field on the right hand side of equations 14 into the other 
field on the left hand side of these equations. That is one field is diffracted by the refractive index grating 
and becomes part of the other counter-propagating field that forms the grating. We can simplify these 
equations even further by realizing that the gas parameters are changing on a much slower time scale than 
the field amplitudes and then equations 14 are transformed to 
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at each time step. For a gas interaction length L, the boundary conditions for field amplitudes are given by  
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Analytical solution 
We can now obtain an analytical solution for the field amplitudes as a function of position along the 
induced Bragg grating.  At const)( =Δ xna , we can find the analytical solution of equations (15a) and (15b) 
satisfying the boundary conditions (16) given by 
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where parameter cns a 2/)( 2/1
21ωωΔ= . 

 
Numerical solution 
In general case when the index refraction perturbation is position and time dependent ( ),( txnn Δ=Δ ), we 
can find a numerical time-dependent solution. For a known index of refraction perturbation with an 
amplitude ),( txnaΔ , determined at each “gasdynamic” time step, we solve equations (15a), (15b) with 



boundary conditions (16), using the second-order Euler scheme. Because the boundary conditions for 
complex field amplitudes (16) correspond to the opposite sides of the interaction region, the iteration 
procedure is applied up to complete convergence of all unknown parameters with given high accuracy. 
Afterwards, a corresponding distribution for the ponderomotive force (11) was computed and a new value 
of the distribution function ),( ttxf Δ+  was then calculated from the Boltzmann equation (6) with the 
ponderomotive force (11). The Boltzmann equation (6) was solved using a 2nd order McCormack predictor-
corrector method [9]. The density perturbation (5) and corresponding index refraction perturbations (3) 
were defined. 
 
Traveling Bragg lattice 
The interaction of laser beams with the OL-induced gas periodic density perturbation results in Bragg 
scattering (Fig. 2). When the phase velocity (8) c<<ξ  in the reference frame of the traveling Bragg lattice 
the incident and reflected waves are Doppler shifted by  )/1(1,1 cf ξωω −=  and 21,1 )/21( ωξωω ≈−= cR . 
The same happens for the other incident wave, 1,2 ωω ≈R .  

 
 

Fig. 2. Schematic of interaction with self-consistent traveling Bragg lattice 
 
Optical field-gas energy conservation 
The density of energy dissipation power is given by:  
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The total dissipation rate in a gas for a cylindrical interaction region of length L and cross-section S is given 
by  
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In agreement with the conservation of energy, described by the general conservation of energy equation 
[10]. The change of energy stored in a gas is related to the dissipation of the laser radiation energy given by 
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Here ),( txWE  is the density of the electromagnetic energy averaged over the period of optical field 
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is the Poynting vector [10, 11]. The averaged Poynting vector is 2,12,1/22,1 2,1
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rr

=>Π< ωπ , where 2,1i
r

 is the 

unit vectors in the direction of wave propagation. Integrating of eq. (20) over the whole interaction volume 
gives 
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 is the rate of dissipation of electromagnetic energy. From (23) 

it follows the balance of Poynting vector fluxes is 
SPPtItLItLItI gEM /)(),0(),(),(),0( 2211 +−=−+−=ΔΠ .  (24) 

 
Momentum transferred from the OL to the gas 
In general case, the rate of changing of the x-projection of momentum (force in x-direction) [11] is 
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momentum of the electromagnetic field in the OL volume, correspondingly; ijT  is the Maxwell stress 
tensor: 
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If the OL is created by the interference of two opposite plane waves with )0,,0( 2,12,1 yEE
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For the rectangular pulse of τ duration the momentum of the gas is 
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Example Results 
I. An amplifier 
In the case of two equal opposite laser beams, the result of optical lattice-gas interaction is symmetric. The 
Bragg lattice induced in result of optical lattice - gas interaction is self-consistent and the beam reflected 
back comes to the beam of opposite direction. Therefore, it is possible to amplify a weak laser beam 
interfering with intensive beam, because of reflection back of a high intensity beam results in a relatively 
strong amplification of the weak intensity beam. 
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anΔ  determined by equations (17a) and (17b). The interaction region length is 

taken as λ200=L .  
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An example of interaction of two interfering laser beams is considered for methane gas at p=1 Atm and 
T=293 K with equal laser beam intensities 16

1 10)0( =I  and 12
2 10)( =LI  W/m2.  Let, for example, the laser 

wavelength to be 532=λ  nm and the frequencies of each beam are equal giving a lattice phase velocity, 
.0=ξ  The results for amplifier are shown in Fig. 4 and 5. Fig. 4 shows the longitudinal distribution of the 

weak beam intensity along the optical lattice illustrating the amplification of the weak beam as it propagates 
from right to the left.  
 
It is clear that the effect of amplification is stronger the larger the difference between the beam intensities 
and the longer the interaction length. For optical lattice of 532.0104 == λL  and 064.1102 4 =⋅ λ  cm a simple 
parabolic extrapolation gives an amplification of )(/)0( 22 LII =2.33 and 6.36 correspondingly.  
  
A similar analysis for energy transfer from one laser beam to another made for co-propagating time-
dependent laser beams that are intersecting in liquids is given in reference [12]. 
 
II. Gas – OL self-consistent interaction 
The results for CH4 gas for the case of 15

21 105)()0( ×== LII  W/m2; p=10 Torr; T0=293 K; 532=λ  nm and 
L=100λ  are shown in Figures 5-8. At relatively low gas density ( cOL l/λ  ~ 1) modulation of the laser beam 
intensity results because of the gas bouncing between the walls of the optical lattice. 
 
Presented results clearly show that all parameters are modulated with the period determined by the so-
called bounce frequency. The bounce frequency for trapped particles is 
ΩB ≈ q U /2m  where  U = 2αI /ε 0c . The estimated frequency is  103.37 9×≈ΩB rad/s and 

86.1/2 ≈Ω= BBT π ns are in very good agreement with the computed data. The amplitude of oscillation is 

decaying due to collisions at the given conditions (10 Torr, 293 K) equal to  8=cτ ns. Results of optical 

lattice – gas interaction depend on OL phase velocity. At 0≠ξ , the plateau forms a distribution with the 
half-width 2/1)/2( mUv =Δ  shown in Fig. 7.  
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Because of presence of collisions there is dissipation, even at 0=ξ  (Fig.8) 
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Dissipation of laser power in a gas 
It is interesting to compare results for laser power absorption in a gas, computed with eq. 18, with a 
simplified analytical solution that was derived in [13,14]. The power absorbed in the gas is  
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We make a comparison at the following conditions where the gas is CH4, the pressure is p=760 Torr and the 
laser intensities are 16

21 10)()0( == LII  W/m2 and the wavelength is 532=λ  nm. Both the analytical theory 
and the results of numerical calculations (Fig. 9) give the same dependence with intensity 2IWg ∝& . The 

maximal absorption rate at phase velocity ( ) 2/1/2 mkT=ξ  is in good quantitative agreement.  
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Conclusions 
In this paper we studied the non-linear interaction of an optical lattice with a gas on the basis of the 
Maxwell equations for the laser fields and the Boltzmann kinetic equation for gas motion in low and high 
density cases. As a result of induced gas density (and therefore the index of refraction) perturbation, the 
Bragg lattice forms resulting in feed back of the laser radiation. The strength of interaction depends on 
optical lattice phase velocity. It is shown that if the relative intensities of opposite laser beams are very 
different then amplification of weaker beams is possible. At relatively low gas densities, when the free 
mean path is comparable with the optical lattice wavelength, we predict the modulation of the generated 
laser beam intensities, which occurs due to energy and momentum exchange with the trapped bouncing gas 
and the field.  Generalized equations for the optical field-gas energy and momentum conservation were also 
presented.  
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Fig.9. Comparison of simplest analytical [14] and detailed 
computations with the present model. Both predict the same phase 
velocity for maximum absorption. In both the power absorbed 
scales as I2. 


